Approximating the Noisy-Or model by Naive Bayes

نویسنده

  • John M. Agosta
چکیده

This paper gives an algebraic derivation of the posterior for both the noisy-or and naive Bayes models, as a function of both input messages and probability table parameters. By examining these functions we show a technique where the naive Bayes model may be used to approximate a logical-OR, rather than its typical interpretation as a logicalAND. The technique is to avoid the use of disconfirming evidence in the naive Bayes model. A comparison with the posterior function for the noisy-or shows the quality of the logical-OR naive Bayes approximation. This approximation is key to the assumption of the underlying tree structure in a certain class of diagnostic Bayes’ networks, where the tree structure mimics an is-a hierarchy. We argue that this is the correct causal structure. An example of applying the Bayes’ network model to network intrusion detection illustrates this. This assumption that a treestructured diagnostic Bayes’ network can be formulated from an is-a hierarchy is a useful elicitation tool. We have addressed the quality of the numeric approximation in this assumption; the exact nature of cause in an is-a hierarchy remains an open question.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier

With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...

متن کامل

Learning Naive Bayes Classifier from Noisy Data

Classification is one of the major tasks in knowledge discovery and data mining. Naive Bayes classifier, in spite of its simplicity, has proven surprisingly effective in many practical applications. In real datasets, noise is inevitable, because of the imprecision of measurement or privacy preserving mechanisms. In this paper, we develop a new approach, LinEar-Equation-based noise-aWare bAYes c...

متن کامل

Sisterhood of Classifiers: A Comparative Study of Naive Bayes and Noisy-or Networks

Classification is a task central to many machine learning problems. In this paper we examine two Bayesian network classifiers, the naive Bayes and the noisy-or models. They are of particular interest because of their simple structures. We compare them on two dimensions: expressive power and ability to learn. As it turns out, naive Bayes, noisy-or, and logistic regression classifiers all have eq...

متن کامل

Diagnosis of Pulmonary Tuberculosis Using Artificial Intelligence (Naive Bayes Algorithm)

Background and Aim: Despite the implementation of effective preventive and therapeutic programs, no significant success has been achieved in the reduction of tuberculosis. One of the reasons is the delay in diagnosis. Therefore, the creation of a diagnostic aid system can help to diagnose early Tuberculosis. The purpose of this research was to evaluate the role of the Naive Bayes algorithm as a...

متن کامل

Naive Bayesian Rough Sets

A naive Bayesian classifier is a probabilistic classifier based on Bayesian decision theory with naive independence assumptions, which is often used for ranking or constructing a binary classifier. The theory of rough sets provides a ternary classification method by approximating a set into positive, negative and boundary regions based on an equivalence relation on the universe. In this paper, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002